Math 564: Advance Analysis 1
Lecture 18

Jordan deconp. theorem follows tron Hahn decomposition.
Def. ut O be a signed measure on a meashcuble space (X, B). Call a set $A \leq X \quad \nu$-positive if $A \in B$ and $\nu(A) \geqslant 0$.
Call a sot $A \subseteq X$-purely positive if A is v-positive and every cabot of A in B is v-positive. We define v-negative and v-parely negative analoyensly, and we drop v from the terminology if it is clear.

Caution. The union of two non-dispoint positive sets may not be positive:

$$
\begin{array}{ll}
A & v(A \cup B)=1.1-2=-0.9, \\
-1.1-1 & \text { chile } v(A)=v(B)=0.1 .
\end{array}
$$

However:
Obs. (a) Positive/negative sets are dosed under ctbl disjoint unions.
(b) Peerely positive/negative sets are dosed under cthl (not necessarily disjoint) unions.

Hahn decomposition theorem. Let v be a signed measure on a measurable space $\mid X, B)$. Then \exists unique (unto purely pos.anll sets) partition $X=X_{+} \cup X_{-}$, where X_{+}is purely positive cent x_{-}is purely negative. In particular, $\nu=\left.v\right|_{x_{t}}-\left.v\right|_{x_{-}}$is a Jordan lecomposition. Uniqueness: if $X=\tilde{X}_{+} U \tilde{X}_{-}$is another sech partition, then $X_{+} \Delta \tilde{X}_{+}$and $X-\Delta \tilde{X}_{-}$are purls positive null. Proof. WLOG, suppose $v<\infty$ (othervise replace it with - v).

Chain. Every non-null positive sat $P \subseteq X$ contains a purely positive subut $P_{+} \subseteq P$ with $v\left(P_{t}\right) \geq b(P)>0$.

Paoof. We pove this bs a $\frac{1}{2}$-weasure exhaustion arganect.
let $N_{0} \subseteq P$ be $\frac{1}{2}$-largect vegetive set, i.e.

$$
-v\left(N_{0}\right) \geqslant \frac{1}{2} \overline{\sin }\{-v(N): N \leq P \text { ad } N \text { is vegctice }) \text {, }
$$

char $\bar{r}:=\min \{1$, sup\} $\}$. Tluen, $P \backslash N_{0}$ is still positive, so we repent: given a dirjuest segatce $\left(N_{i}\right)_{i<k}$, let N_{k} be $\frac{1}{2}$-lacgest wegative subsel of $P \backslash \bigcup_{i<k} N_{i}$, i.e.

$$
-v\left(N_{k}\right) \geqslant \frac{1}{2} \overline{\pi p}\left\{-v(N): N s P \backslash \bigcup_{i<k} N_{i}, N \text { negati-e }\right\} .
$$

Having obtained a pairnile disjoint segcence $\left(N_{k}\right)_{k \in \mathbb{N}}$, let $P_{+}=P\left(\bigcup_{k N} N_{\text {e }}\right.$ Note hat bs ctbl addifivith, $v(P)=v\left(P^{t}\right)+\sum_{k \in N} v\left(N_{R}\right)$, so $v\left(P^{+}\right) \geqslant \nu(P)$ and $\sum-v\left(N_{k}\right)<\infty$. It follous $\mathrm{K}_{\mathrm{t}} P^{+}$is $k \in \mathbb{N}$ purels positice becre $k \in \mathbb{N}$ if \exists non-nall negative $N \subseteq P^{+}$then beme $\left(-v\left(N_{k}\right)\right)$ is summable, $\exists K$ lit, $-v\left(N_{k}\right)<\frac{1}{2} \operatorname{mic}\{1,-v(N)\}$, cortcadicting the choice of N_{k}.

We know "wotlect all" purely positive sels, so Mat what's left is pured negative. We do so by $\frac{1}{2}$-neasure exhacstion argueat. let P_{0} be a $\frac{1}{2}$-lacgest punels positive set, i.e.

$$
v\left(P_{0}\right) \geqslant \frac{1}{2} \sqrt{x p}\{v(P): P \leq X \text { parel, positie. }\}
$$

... Suppose $\left(P_{i}\right)_{i c k}$ is a disjoind segcence of perely positive zeh, and lit P_{k} be $\frac{1}{2}$-lagest punel, positive schset of $X \backslash \operatorname{LI}_{i<k} P_{i}$, i.e.

$$
\left.V\left(P_{k}\right) \geqslant \frac{1}{2} \overline{s i p} S_{V}(P): P \leq X \backslash \bigcup_{i<k} P_{i} \text { parels positive }\right\} \text {. }
$$

Let $X_{t}:=\bigcup_{k \in \mathbb{N}_{k}}$ and $X_{-}:=X \backslash X_{+}$. Then X_{t} is parely poritioe acl $v\left(X_{t}\right)<\infty$ by our csssumption, so $\sum_{k \in \mathbb{N}} v\left(P_{k}\right)=v\left(X_{t}\right)<\infty$.

It now follows $U_{t} X$ - is purely negative be ne othervise, Jaon-null positive $P \subseteq X_{-}$, so \exists purely positive $P_{+} \subseteq P$ w. th $\nu\left(P_{+}\right) \geqslant \nu(P)=0$, hence $\exists k$ it. $v\left(P_{k}\right)<\frac{1}{2} \min \left\{1, v\left(P_{t}\right)\right\}$, coot, ${ }^{2}$ chicting the choice of P_{k}.

Cor. For a signed wespre v, if $\nu<q$, then $\exists M>0$ if. $\nu \leq M$. Proof. Lt $M:=v\left(X_{+}\right)$.

Recall we warded to prove:
 a measurable pace $(X, B), \quad X:=X_{1} \cup X_{0}$ sit.
$\left.\left.\int\right|_{x_{1}} \ll v\right|_{x_{1}}$ and $\left.\left.v\right|_{x_{0}} \perp v\right|_{x_{0}}$.
One can pore this directly without signed measures by a $\frac{1}{2}$-measure exhaustion argument, bat we will just prove a stronger theorem:

Lebrigne-Ralou-Nikodym theorem. For any two σ. finite ueasnes μ, ν on a neasiretle space (X, B), there is a partition of $X=X, \cup X$. into subset in \otimes sit. $\left.\left.\mu\right|_{X_{0}} \frac{1}{} v\right|_{X_{0}}$ and $\left.\left.\mu\right|_{X_{1}} \ll \nu\right|_{X_{1}}$, moreover, $d\left(\nu \mid x_{1}\right)=f d\left(\left.\nu\right|_{x_{1}}\right)$ for some non-wegative B-measirable $f^{\prime}: x \rightarrow(0,0)$, iR. $\forall B \leq X_{1}, B \in B$, we have

$$
\mu(B)=\int_{B} f d \nu
$$

X_{0}, X_{1} and f are unique up to null sets. This f is called the Reclon-Nikodym derivative of $\left.\mu\right|_{x}$ over $\left.\nu\right|_{x \text {, and }}$ is denoted $\frac{d\left(\left.\mu\right|_{x_{1}}\right)}{d\left(\left.\nu\right|_{x_{1}}\right)}$.

To pave this, we end the following leans:
Lemma. For finite measures μ, v on a measurable space $(X, \gamma 3)$, either: $\mu \perp v$
or: $\left.\mu\right|_{A} \geqslant\left.\varepsilon \cdot \nu\right|_{A}$ for some $A \in B$ with $v(A)>0$, ant for some $\zeta>0$.
Proof lit $\varepsilon_{n}:=\frac{1}{n}$. let $P_{n} \cup N_{n}$ be the Hahn decagroistion of X for the signed weasel $\mu-\varepsilon_{n} \cdot v$. Let $P:=\mathcal{V}_{n \in \mathbb{H}} P_{n}$ and $N=$ $X \backslash P=\bigcap_{n \in \mathbb{N}} N_{n}$. Note nt $0 \leq \mu(N) \leq \varepsilon_{n} \nu(N) \quad n \in \mathbb{N}$ for all n, so $\mu(N)=0$. If $v(P)=0$ then $X=P \cup N$ withers $\mu \perp 0$. Dthervise, \exists some n sit. $\nu\left(P_{n}\right)>0$ and $\left.\mu\right|_{P_{n}}-\left.\varepsilon_{n} \cdot \nu\right|_{P_{n}} \geqslant 0$.

Proof of Lebogge -Radou-Nikodym. The maignenen is clear (if there is another \tilde{f}, the $\int|f-\tilde{f}| d \nu=0$, so $f=\tilde{f} \nu$-a.e.). First assume μ, ν are finite.

