Math 564: Advance Analysis 1

Lecture 18

Jordon decomp. theorem follows from Hahn decomposition. Det. ut vier signed necessive on a neashrable space (X, B). Call a set A s X 7-positive if A E B and 2(A) Z-O. Call a set A EX -purely positive if A is v-positive and every ubset of A in B is v-positive. We lette v-negative and v-purch regenive analogoesly, and we drop & from the terminology if it is dear. <u>Caution</u>. The union of two non-disjoint positive sets may not be positive: However: <u>Obs.</u> (a) Positive/negative sets are closed under ctbl disjoint unions. (b) Parely positive/negative sets are closed under ctbl (not necessarily divioset) unions. disjoint) unions. Hahn decomposition theorem. Let v be a signed measure on a measurable space (X,B). Then I unique (up to purely pos. null sets) partition X = X+ U X_, where X+ is purely positive and X_ is purely negative. In particular, v=v|x+-v|x- is a Jordan lecomposition. Uniqueness: if X=X+UX_ is another such partition, then X+AX+ and X-AX are purely positive null. Proof. WLOG, suppose v < ~ (othervise replace it with -v). Claim. Every non-null possible set $P \in X$ contains a purely possible subset $P \in P$ with $v(P_{+}) \ge v(P) > 0$.

Proof. We prove this by a
$$\frac{1}{2}$$
-reasure exhaustion argument.
Let No $\leq P$ be $\frac{1}{2}$ -larged vegetive set, i.e.
 $-\nu(N_0) \geq \frac{1}{2} \sup_{i \to p} \{-\nu(N) : N \leq P$ at N is negative),
thure type is min {1, sup}. Then, PNNo is still positive, so we repet:
given a disjoint sector (Ni)ick, 1 let Nk be $\frac{1}{2}$ -koged upshive
subset of P(UN); i.e.
 $-\nu(N_k) \geq \frac{1}{2} \sup_{i \in k} \{-\nu(N): N \leq P\}$ $\underset{k \in k}{\text{IN}}$, N negative}.
Having obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were, let $P_{\epsilon} = P(UN)$
Note the by obtained a paintwise disjoint sequence (Ne)were $P(VN)$, so $\nu(P(P) \geq P(VN)$
and $\sum -\nu(N_k) < 0$. It follows let P^{ϵ} is feel purely positive beau
KerN if \exists unannull negative $N \subseteq P^{\epsilon}$ beau bands (P(N)), contradic-
ting the choice $0 \neq Ne$.
We have "nollect all" purely positive sets, in the shorts left is princed
weighter. We do so by $\frac{1}{2}$ -measure exclusions argument. Let P_0
be a $\frac{1}{2}$ -larged prively positive sets of princes positive $\frac{1}{2}$
 $\nu(P_0) \approx \frac{1}{2} \sup_{i \in N} (\nu(P)): P \leq X (P_0)$ positive $\frac{1}{2}$
 $\nu(P_0) \approx \frac{1}{2} \sup_{i \in N} (\nu(P)): P \leq X (P_0)$ positive $\frac{1}{2}$
Ut $X_{i} = UP_k$ and $X_{i} = X \setminus X_{i}$. Thus X_{i} is princes positive?
 $\nu(X_{i}) < \infty$ by our assumption, as $\sum_{k \in N} \nu(R_{k}) = \nu(X_{i}) < \infty$.

It we follows Mt X. is perels respective beaux observice, Frankly
positive PSX., so I perels positive Pf EP with V(P2)29(P)-9)
hence IK it.
$$V(P2) < \frac{1}{2}$$
 win S1, $V(P_1)$ S, contracticities the
device of Px.
Lor. For a signed measure V, if $v < 0$, then I M=0 if $v = M$.
Prote let $M := v(X_1)$.
Reall we maded to prove:
Lobesque deverposition Measures. For any two strinite measures it v an
a measurable space (X, B) , $X := X_2 U X_0$ s.t.
 $J'|_{X_1} < v|_{X_1}$ and $J'|_{X_0} = V'|_{X_0}$.
Due can prove this directly without signed measures by a $\frac{1}{2}$ -measure
extractione argument, but we will just prove a stronger theorem:
Lobesque - Radon-Mikodyn theorem. For any two Strinite measures if $V = 0$
a measurable space (X, B) , dere is a partition of $X = X_1 U X_1$
into subth in $B = St$. $J'|_{X_0} = V I_{X_0}$ and $J'|_{X_1} < v V|_{X_1}$, moreover,
 $d(J'|_{X_1}) = th(V|_X)$ for some non-mighter Be-measures for $X = (B, B)$, i.e.
 $V = B = \int S dv$.
 X_0, X_1 and forme unique up to null sub. This (is called the
Readon-Nikodyn divisite of $J'|_{X_1}$ over $v|_{X_1}$ and is denoted
 $d(J'|_{X_1})$.

Proof of Leboque - Radon-Nikodyn. The migheness is clear (if there is another F, then SIF-FIdr = D, so f=F r-a.e.). First assume in, r are finite.